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Summary

Searching for exact matches to pre-computed functional variants unique to hazardous genes enables sensitive, secure,

and automated DNA synthesis screening.

Abstract

Custom DNA synthesis underpins modern biology, but hazardous genes in the wrong hands could threaten many lives

and public trust in science. In 1992, a virology-trained mass murderer tried and failed to obtain physical samples of

Ebola; today, viruses can be assembled from synthetic DNA fragments. Screening orders for hazards is unreliable and

expensive because similarity search algorithms yield false alarms requiring expert human review. Here we develop

“random adversarial threshold” (RAT) search, which looks for exact matches to short nucleic acid and peptide

subsequence windows from hazards and predicted functional variants that aren’t found in any known innocuous genes.

To experimentally assess sensitivity, we used RAT search to protect nine windows from the M13 bacteriophage virus,

then invited a “red team” to launch up to 21,000 attacks at each window and measure the fitness of their designed

mutants. We identified defensible windows from regulated pathogens, built a curated test database that our M13

experiments indicate will block 99.999% of functional attacks, and verified its sensitivity against orders designed to

evade detection. RAT search offers a way to safeguard biotechnology by securely automating DNA synthesis screening.

Introduction

The COVID-19 pandemic demonstrated that society is

profoundly vulnerable to new transmissible biological

agents, even as virus assembly protocols and inexpensive

de novo DNA synthesis have made harmful pathogens

accessible to a large and growing number of technically

skilled individuals
1–4
. Recent publications strongly

suggest that future advances will provide genomic

blueprints and step-by-step reverse genetics protocols for

credible pandemic agents
4–13

.

Fortunately, most individuals skilled enough to assemble

viruses with reverse genetics cannot synthesize DNA on

their own. Members of the International Gene Synthesis

Consortium (IGSC), an industry group, are committed to

screening DNA synthesis orders above a certain length
14
.

The IGSC deserves praise for voluntarily prioritizing

safety because doing so is costly: traditional screening

methods based on BLAST generate false alarms that

require human expert review
15,16

. As the price of synthetic

DNA falls, the effective cost of screening grows
15
.

Unfortunately, more than two thirds of gene synthesis

firms are non-members. A modern equivalent of 1992’s

virology-trained terrorist
17
can plausibly obtain potential

pandemic viruses by ordering the DNA from a company

not listed on the IGSC website (Fig. 1a).

Even if all providers did screen requests, adversaries

could obtain DNA sufficient to generate a pandemic virus

by assembling oligonucleotides shorter than the

minimum length for screening; by ordering

non-overlapping pieces from multiple suppliers; or by
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swiftly placing orders for newly identified pandemic

viruses to exploit databases that are slow to update,

among other attacks (Fig. 1a). Recent red-teaming

confirmed many of these weaknesses
18
. Benchtop

machines enabling on-site synthesis create another

vulnerability
15,19,20

: not only must each device be updated

whenever a new threat is identified, but the hazard

identification system cannot be stored locally on the

device lest it be interrogated and used to build software

allowing others to obtain hazards undetected.

Verifiably screening all commercial and benchtop DNA

synthesis for current and emerging hazards
21
demands a

fully automated, centralized, and privacy-preserving

approach that detects short hazardous sequences while

triggering negligibly few false alarms. Current algorithms

based on sequence alignment, pattern recognition, or

exact subsequence matching are insufficiently sensitive,

specific, and efficient for universal screening (Fig. 1b-c).

We hypothesized that the unique signature of a hazard

can be approximated by compiling all short subsequence

windows, predicting functional variants of

pseudo-randomly chosen windows to enhance sensitivity,

and removing any window that matches a known

harmless sequence to ensure specificity. Searching for

exact matches to this approximated signature is

compatible with privacy-preserving cryptography. Here

we describe and experimentally assess the sensitivity of

“random adversarial threshold” (RAT) search; our

companion paper analyzes specificity and the

performance of a cryptographic implementation.

Figure 1 | Achieving robust DNA synthesis screening

a) Adversaries can evade current screening by exploiting

weaknesses. Not all providers screen due to the cost,

benchtop devices cannot wait for human review, and

decentralized sources are vulnerable to split orders and

failures to update. Centralized screening can only preserve

order privacy with cryptography, which requires a highly

specific and efficient search algorithm. b) Reliable screening

requires sensitively detecting functional variants of hazards

without flagging similar subsequences from harmless

relatives. Alignment and pattern-based search find similar

sequences, but generate false alarms and can miss functional

equivalents. Exact match search can only detect wild-type

hazards. Predicting functional variants of randomly chosen

subsequences and curating to remove harmless matches can

detect evasive attempts and avoid false alarms. c) In

principle, combining exact match search with functional

prediction and curation is specific enough to be automated,

sensitive enough to thwart adversaries, and efficient enough

for cryptographic methods to protect the privacy of both DNA

synthesis orders and the entries in the hazard database
22
.
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Results

Suppose that an adversary seeks to obtain a protected

hazard W by incorporating mutations to evade RAT

search (Fig. 2b). For each mutated subsequence window

wi, there are three possible outcomes:

1. wi is present in the hazards database, and the

synthesis order is rejected and logged

2. wi escapes detection, but imposes a fitness cost ci

that reduces functionality

3. wiescapes detection at negligible cost

Success requires the adversary to achieve the third

outcome for most wi to preserve function. We define the

random adversarial threshold R as the probability that

an adversary with perfect knowledge of the fitness of

each variant – but ignorant of which windows and

variants are defended – will be detected upon attempting

to synthesize functional W.

In theory, defending all variants that do not completely

abolish the function of W at an essential window wi can

perfectly thwart the adversary, achieving R=1. In

practice, fitness prediction is imperfect, but R can still be

maximized by defending windows predicted to be least

tolerant of mutations and adding new windows when an

attempt is detected (Fig. 2b, Extended Data Fig. 1).

Importantly, an adversary with superior predictive

capacity who learns which function-prediction

algorithms are used for RAT search can evade screening

by choosing the highest-fitness undefended variant

known to them for each window (Fig. 2c). By choosing

which windows and variants to defend quasi-randomly,

we can force the adversary to heavily mutate all windows

throughout the hazard in order to evade detection,

greatly reducing their odds of obtaining functional W.

Choosing a window size while maintaining specificity

Before experimentally measuring R, we need to know

how many variants we can defend without flagging too

many innocuous sequences. A key benefit of exact-match

screening is the ability to curate the database by

removing all peptides and k-mers that match harmless

and/or unrelated sequences from sequence repositories

(Fig. 3, Extended Data Fig. 2). We distinguish such

sequences from hazards and close relatives using

taxonomic classification, keywords, and counting the

number of windows that match the hazard, among

others. As our companion paper demonstrates, RAT

search using a large curated database will seldom if ever

flag unrelated harmless sequences.

Figure 2 | Random adversarial threshold search

a) Screening relies on detecting matches between

subsequences from DNA synthesis orders and from hazards.

Efficient exact-match search permits the use of cryptography

to preserve the privacy of both orders and hazards
23
.

b) To evade screening, the adversary must choose a mutated

subsequence for every window across the coding sequence of

the hazard without being detected, as shown. This is

maximally challenging when the hazards database is

populated with predicted functional variants of windows that

tolerate few mutations. The “random adversarial threshold” is

the probability that an adversary with perfect knowledge of

the fitness landscape will be detected. Detection becomes

more probable as the defender’s predictive capacity increases

relative to the attacker’s. c) An attacker who knows exactly

which windows are defended can evade imperfect screening.

Choosing windows and variants quasi-randomly forces an

imperfect attacker to guess, likely including so many

mutations that the resulting hazard is no longer functional.
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Figure 3 | Building and using the hazards database

To generate and curate a database of hazards for random

adversarial threshold screening, subsequences from hazards

and predicted functional variants are compared to

similarly-sized windows from NCBI repositories. Matches to

repository sequences that are not hazardous – as determined

by taxonomy, keywords, and fraction of matching windows –

are discarded to reduce the false alarm rate.

However, novel sequences absent from natural

organisms – which are commonly employed in deep

mutational scanning and directed evolution experiments

as well as designed proteins – will still randomly trigger

false alarms. Random false alarms will occur at a

frequency determined by the total amount of DNA

synthesized, the number of sequences in the database,

and the window length (Appendix A).

Historical efficiency improvements
24

and market

projections suggest that global annual synthesis demand

may rise to as much as 10
15
base pairs in a decade. While

almost certainly an overestimate, this is counterbalanced

by the fact that functional biopolymer sequences are not

randomly distributed
25
: peptide frequencies are highly

biased by amino acid composition and functional

constraints
26–28

. For our initial experiments aimed at

measuring R, we chose to screen peptides of length 19

because searching for 10
7
functional variants for each of

1,000 hazards would yield one truly random false alarm

per 10
15
base pairs of DNA.

Experimentally testing sensitivity

To test the efficacy of RAT screening against deliberately

introduced mutations and learn which types of windows

are most easily defended, we selected the harmless M13

virus that infects E. coli as a “hazard”. Lacking a reliable

multiple-mutation variant effect predictor at the time
29
,

we chose a variety of peptide windows with properties

that might be relevant to defense by analyzing all length

19 peptide subsequences using fuNTRp, a computational

tool that categorizes residues within proteins as “neutral”

if they likely tolerate most mutations, “rheostat” if they

suffer reduced fitness from many but not all mutations,

or “toggle” if nearly any mutation is deleterious
30
. From

four required M13 proteins (Extended Data Fig. 3), we

selected nine total windows with fairly low to very low

neutral values and a range of rheostat and toggle scores

(Extended Data Fig. 4, Extended Data Table 1).

Next, two “blue team” members constructed databases of

10
3
to 10

7
predicted functional variants for each window

using a Metropolis-Hastings algorithm
31
that combined

the fuNTRp scores of each residue with the BLOSUM62

matrix of observed substitutions across proteins. While

recent protein design tools are markedly superior to

BLOSUM62
32,33

, our method serves as a baseline for

defensive efficacy tests that can be substantially

improved upon.

“Red team” members experimentally tested the security

of RAT search by designing and launching up to 21,000

attacks at each of the nine windows using combinatorial

rational design (Fig. 4a). They chose to order

oligonucleotide pools with all possible combinations of

the four most common substitutions at the six positions

with the highest neutral scores, pairwise substitutions of

all amino acids at those six positions, and all possible

single substitutions. They generated libraries of variants

by molecular cloning and measured the effects of each

variant on phagemid replicative fitness via

complementation.

We defined “functional” variants as those with a

measured fitness of at least 0.05 relative to wild-type,

which is the level at which the most infectious virus

known can no longer spread in an unprotected

population
34
. Since approximately 50% of variants

chosen by the attackers met this standard, the red team

effectively launched ~10
33

combinatorial, individually

functional attacks on the nine windows in the database.
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Of the attacks on the most defensible window, 85.2%

were detected by a database with 10
6
entries (Fig. 4b).

That is, even an adversary with perfect knowledge of

subsequence fitness who already possesses the other 99%

of the wild-type M13 genome sequence was likely to be

detected and thwarted at just this one window. While

other windows were less defensible, most still blocked

~30-50% of attacks (Fig. 4c).

These results underscore the extreme difficulty of

obtaining a functional hazard by incorporating mutations

to evade RAT search. When the nine M13 windows were

each defended by 100,000, 1 million, or 10 million

variants, 99.3%, 99.7%, and 99.9% of individually

functional attacks were detected at one or more windows

(Fig. 4d).

Figure 4 | Incorporating mutations into the genomic blueprint of a virus cannot readily escape screening. a)

Team members built defensive databases by predicting functional variants for nine different windows in the genome of M13

bacteriophage. Others launched ~21,000 attacks at each window by synthesizing variants with up to six amino acid changes and

using a phagemid assay to measure the fitness of each variant, which we defined as enrichment relative to the wild-type

sequence. b) At the most defensible window, located within the M13 pII endonuclease, 92% of attacks yielding variants with

fitness above 0.05 were thwarted by screening. Smaller dots correspond to sequences with fewer mutations. c) At a moderately

defensible window located within the M13 pIII receptor-binding protein, 49% of such attacks were thwarted, underscoring the

importance of window choice. Potential pandemic pathogens can tolerate only so many mutations impairing fitness before they

are no longer capable of sustained transmission. The corresponding fitness lines depict these threshold values for 1918

influenza (R0~2.5), SARS-CoV-2 (R0~4), mumps (R0~10), and measles (R0~18), which is the most contagious virus known. d)

The fraction of attacks detected, which corresponds to the random adversarial threshold, as a function of the average fuNTRp

toggle score for each of the nine windows for various database sizes (1000, 2000, 5000, 10
4
, 5✕10

4
, 10

5
, 5✕10

5
, 10

6
) using a

fitness cutoff of 0.05 (sufficient to prevent the sustained spread of measles). Combinatorial screening of all nine windows (right)

detected virtually 100% of individually functional attacks. Data

5
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Since the red team knew exactly which windows to

mutate and was able to generate libraries to find

functional variants without penalty, these results

strongly suggest that R can approach 1.0 unless the

attacker has notably superior predictive capability.

Moreover, windows do not exist in isolation: an attack

featuring mildly deleterious genomic mutations in two

different windows that separately reduce fitness to 0.20

typically has a combined fitness of 0.04 (or less)
35,36

, and

consequently will not be functional (Extended Data Fig.

5). We simulated combinatorial attacks by randomly

combining functional variants at each window into 10
10

M13 phage genomes, multiplying the fitness values for all

nine windows, and discarding those with a combined

fitness below 0.05. Because more high-fitness windows

were required on average, which are more readily

predicted (Extended Data Fig. 6), defending just 50,000

variants per window successfully detected 99.94% of

combinatorially functional attacks by the red team.

As expected, some windows were easier to defend than

others. The fuNTRp “toggle” score, or predicted

sensitivity to mutation at each position
30
, appears most

predictive of R for each of the nine windows (Extended

Data Fig. 8). In principle, analyzing the false positive and

false negative rates for toggle-based prediction at each

window allows us to estimate the optimal number of

database entries to include in order to defend still more

effectively (Extended Data Fig. 9).

Most importantly, defending 20 windows equivalent to

the geometric mean of the nine from M13 with just

50,000 database entries per hazard would block

99.999% of attacks seeking to obtain a pandemic virus as

contagious as anything known to science (Fig. 5a,

Extended Data Fig. 7).

Figure 5 | Adversarial and machine-learning-generated designs are reliably detected. a) The

cumulative effect of safeguarding more or fewer windows can be extrapolated using powers of the geometric mean of

escapee curves (Extended Data Figs. 6-7). Random Adversarial Threshold is plotted as a function of both simulated

number of windows protected with 50,000 variants, and fitness at which the hazard is no longer functional.

Contours show lines of equal protection as trade-offs between the minimum fitness tolerated and number of

windows protected. As an illustration, 16 mean windows would block 99.99% of attempts to synthesize and spread a

virus as contagious as measles, or 99.999% of attempts to make a viable pathogen as infectious as SARS-CoV-2. In

practice, the database includes 100 or more windows for each hazardous virus. Future prediction tools may influence

these results if not incorporated. b) Detection of redesigned functional and nonfunctional TEVd protease variants

generated with ProteinMPNN, grouped by identity to the wild-type enzyme
37
. All functional redesigns were detected

despite the use of inferior variant prediction tools. Future databases will incorporate ProteinMPNN and other tools

for prediction.
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Defensibility of known hazards

To estimate how many sufficiently defensible windows

are available, we analyzed the genomes of all viruses,

microbial pathogens, and known genes encoding toxins

or pathogenicity islands from the Australia Group

controlled pathogen list for mean window toggle scores

using fuNTRp. All viruses except swine vesicular disease

virus harbored numerous windows with scores above 0.5,

each of which blocked over one-third of attacks in our

phagemid experiments when defended with 10
6
variants

(Extended Data Table 1). Since there are fewer than 100

Australia Group pathogens with publicly available genes

or genomes, we can afford to include variants for dozens

or even hundreds of windows per public hazard without

risking an unacceptable number of false positives. This

effectively blocks the synthesis of all close relatives of

such hazards even though they were not directly included

in the database.

Specificity and sensitivity against adversarial attacks

Having established the robustness of random adversarial

threshold search against evasive strategies focused on

introducing mutations, we sought to determine the

effectiveness of RAT screening against a variety of attacks

that defeat both alignment and exact-match search. We

built and curated a hazards database from the U.S. Select

Agents and Australia Group pathogens (Methods). To

prevent adversaries from ordering and assembling short

oligonucleotides, we additionally included all 30-mer

DNAs as well as 42-mers with all single mutations.

As a preliminary test of specificity, we screened the

2.47-gigabase Clustered Reference Viral DataBase

(C-RVDBv24.0) against the bacterial and toxin sequences

of our hazard database and manually investigated each

hit using BLAST. All matches consisted of

toxicity-conferring genes encoded in viral genomes,

suggesting that RAT search can be extremely specific. In

the companion paper, we report the results of

subsequent specificity testing on real-world DNA

synthesis orders
23
.

To test the sensitivity of RAT search against attempted

evasion, we wrote scripts that used several distinct

strategies to design gene synthesis orders for hazardous

sequences that reliably evade both BLAST and

straightforward exact-match screening for 50-mer

nucleotides and 16-amino-acid peptides, yet can be

assembled into functional hazards in no more than two

laboratory steps using standard protocols. Testing

revealed that our straightforward implementation of

random adversarial threshold search detected every

hazardous sequence and passed every harmless order.

Robustness against protein design tools

In principle, machine learning tools may be capable of

altering enough residues in hazardous proteins to evade

screening while preserving function. To challenge RAT

search against the current state of the art for enzyme

redesign, we built a hazard database to defend TEV

protease, which was recently redesigned with

ProteinMPNN
37
, and screened all reported designs. Fully

100% of designs with nonzero activity were detected,

despite the comparative crudity of fuNTRp+BLOSUM62

prediction (Fig. 5b). Incorporating more advanced design

tools into the database generation pipeline may allow

screening to detect redesigned threats even more

reliably.

Discussion

DNA synthesis screening can help prevent unauthorized

individuals from obtaining pandemic-capable agents and

other biohazards capable of killing thousands or even

millions of people, but the technical limitations inherent

to homology search have precluded effective

implementation. The success of Kraken and related tools

for sequence comparison suggests that exact-match

search could better safeguard biotechnology if rendered

sufficiently sensitive to deliberate attempts at evasion
38
.

Our results demonstrate that predicting functional

variants of randomly chosen subsequence windows from

hazards, curating them to remove any that match

harmless sequences from repositories, and searching

DNA synthesis orders for exact matches is more sensitive

and efficient than current screening algorithms.

In the companion paper, we describe the design,

development, and performance of a free and automated

cryptographic screening system based on RAT search

that preserves the privacy of orders and database

entries
23
. Given suitable legal incentives from clarified

liability frameworks and regulatory requirements, it

could eventually become universal, including in benchtop

devices. U.S. Executive Order 14110, which requires

federally funded institutions to purchase DNA from
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synthesis firms that screen orders in ways that stand up

to red-teaming, may provide a market-based impetus for

near-universal adoption that could be strengthened

through international cooperation. Once the security of

the database has been tested via prize competitions,

SecureDNA could even be used to screen for emerging

hazards without disclosing their nature and highlighting

their credible potential for misuse
22
.

By providing a way to securely automate DNA synthesis

screening, random adversarial threshold search can

substantially mitigate the catastrophic risk posed by

increasingly widespread access to pandemic-class

biological agents.

Methods

Window selection: M13 peptides

The proteins of bacteriophage M13 (Accession

NC_003287.2) were analyzed using fuNTRp
30
, which

scores each amino acid position by the likelihood that it

will accept many (neutral), some (rheostat), or few

(toggle) different substitutions without disrupting

protein function. We used fuNTRp to identify peptide

windows with few predicted neutral positions and

varying numbers of toggle and rheostat positions across

and within proteins (Extended Data Table 1).

Blue team: Defending the nine windows of M13

All single mutations were included for reasons of caution.

For the remaining entries, a Metropolis-Hastings

algorithm was used to select combinations of mutations

predicted to minimally impair fitness. The mutation

tolerance scores estimated by fuNTRp were combined

with the BLOSUM62 matrix to generate a probable cost

for every possible substitution, with costs multiplied for

multiple-mutation combinations.

Red team: Procedurally generating variants for each

19aa peptide window

1. We included the wild-type sequence (1)

2. We included all one-mutants at each position

(19*19 = 361)

3. At the six positions predicted to be most neutral,

we added all combinations of the four predicted

least pathological substitutions according to

BLOSUM62 (5
6

= 15625) (overlaps with

one-muts and WT at 4*6+1=25)

4. As negative controls (not attacks), we included

up-to-six mutants of neutral positions using the

two most pathological substitutions according to

BLOSUM62 (3
6
= 729) (overlaps with one-muts

and WT at 2*6+1=13)

5. We added all pairwise combinations of all

possible substitutions at the six most neutral

positions (19
2
* 15 pairwise combinations = 5415)

(overlaps with 4 most tolerated at 4
2
* 15=240)

(overlaps with 2 most pathological at 2
2
* 15=60)

(included in case the defenders did not block all

of them)

Total: 1 + 361 - 13 + 15625 - 25 + 5415 - 240 -

60= 21,793 peptide variants at each window

Construction of phagemid libraries

Oligo libraries comprising variants for each 19aa peptide

window were synthesized as a pool by Twist Bioscience.

Individual libraries were amplified by PCR and ligated

into a phagemid backbone—encoding an ampicillin

resistance gene, containing an M13 phage origin of

replication, and designed for library variant expression

upon induction by IPTG—using NEBuilder Hifi DNA

Assembly Master Mix (NEB, E2621L). All libraries were

then precipitated with isopropanol, transformed into

electrocompetent DH5α cells (NEB, C2989K), and plated

on 2XYT-carbenicillin-1% glucose; after overnight

growth at 37 °C, colonies were counted to ensure

>50-fold library coverage. Colonies were scraped with

2XYT and plasmid DNA extracted with the ZymoPURE II

Plasmid Maxiprep Kit (Zymo Research, D4203); the

extracted plasmid DNA was then precipitated with

isopropanol. These plasmid libraries constitute the

“pre-selection libraries.”

Construction of helper cells

M13cp
39
, a plasmid containing all M13 phage genes but

with a p15a origin and a chloramphenicol resistance gene

replacing the phage origin of replication, was used to

construct helper plasmids. Primer pairs were designed

for the precise deletion of genes I, II, III, and IV from

M13cp following PCR amplification and ligation using

the In-Fusion Snap Assembly Master Mix (Takara Bio,

638944). The resulting helper plasmids were

transformed into DH5α competent cells (NEB, C2987H),

yielding four individual helper cell lines (M13cp-dg1,

8
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M13cp-dg2, M13cp-dg3, and M13cp-dg4). The helper

cells were made electrocompetent for subsequent

same-day transformations. Helper cells are capable of

extruding phagemid particles when transformed with a

phagemid library variant with a functional gene

(complementing the missing phage gene in the helper

plasmid) and origin of replication (Extended Data Fig. 3).

DNA sequences of helper plasmids and phagemids

expressing wild-type proteins are available on Addgene.

Phagemid growth

Phagemid libraries were transformed into their

corresponding helper cells (nucleic acid variant libraries

were transformed into M13cp-dg3) by electroporation

and plated on 2XYT-carbenicillin-chloramphenicol-1%

glucose. After overnight growth at 37 °C, colonies were

counted to ensure >15-fold library coverage. Colonies

were scraped with 50 mL 2XYT, the bacterial pellet

washed sequentially 3x with 50 mL 2XYT, then a 1:1000

dilution used to inoculate a 50 mL phagemid growth

culture in 2XYT with maintenance antibiotics and 1%

glucose. The culture was grown to OD600 = 0.5 with

shaking at 37 °C and 250 rpm, at which point the culture

was centrifuged and the media replaced with 2XYT

containing maintenance antibiotics and 1 mM IPTG. The

culture was grown for 16 h at 37 °C and 250 rpm, after

which phagemid-containing supernatants were collected

by culture centrifugation and filtration through a 0.22

μm filter.

Phagemid infection

Phagemid-containing supernatants were added to 2.5 mL

S2060 cells (streptomycin-resistant, Addgene #105064)

grown to OD600 = 0.5 and allowed to infect at 37 °C and

250 rpm for 1 h. The resulting infected cultures were

plated on 2XYT-carbenicillin-streptomycin-1% glucose to

select for phagemid-containing cells. After overnight

growth at 37 °C, colonies were scraped with 50 mL 2XYT

and plasmid DNA extracted with the ZymoPURE II

Plasmid Maxiprep Kit (Zymo Research, D4203). These

plasmid libraries constitute the “post-selection libraries.”

Illumina NGS sequencing

Pre- and post-selection libraries were prepared for

illumina NGS sequencing by sequential PCR

amplification. PCR amplification was first performed

with PrimeSTAR GXL Premix (Takara Bio, R051A) to

attach Nextera-style adapter sequences, followed by a

second PCR amplification to attach library-specific

barcodes and the p5 and p7 indices. Following PCR

purification, library concentrations were quantified with

qPCR using the NEBNext Library Quant Kit for Illumina

(NEB, E7630S), and pre- and post-selection libraries

were combined as two pools. Libraries were pooled such

that libraries were present in equimolar quantities

corrected for library size. Libraries were submitted to the

MIT BioMicro Center for MiSeq Illumina sequencing (v3,

2 x 300 bp paired-end).

Hazard database generation

We began by generating a curated database comprising

subsequence windows from U.S. Select Agents, Australia

Group hazards, and functional variants that aren’t found

in innocuous genes and genomes (Fig. 2a). We included

all 19-amino-acid peptides and all 42-mers as well as

30-mers from each hazard; reliably assembling hazards

from smaller DNA pieces is much more challenging
40,41

.

To detect adversarial attempts to obtain functionally

equivalent mutants of known hazards, we

quasi-randomly selected windows to defend and used

variant effect predictors to compute and add millions of

variants per window
30,32,42–46

.

Next, we curated database entries to remove peptides

and k-mers matching harmless sequences found in

GenBank nr/nt and protein nr using taxonomic

classification, keywords, and exact match quantification,

as well as entries with a low Shannon entropy (Fig. 2a).

Curation avoids flagging innocuous sequences known to

science, eliminating nearly all false alarms. As detailed in

our companion paper, the efficiency of exact-match

search permits the use of cryptography to protect the

privacy of DNA synthesis orders sent to be screened and

allows the system to screen for emerging hazards without

disclosing what they are
22
.
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Extended Data Figure 1 | Potential attacks seeking to evade RAT screening and the possibility of

adaptive defense. a) Variants from five windows in a region are included in the hazard database, mostly from

relatively conserved regions. Most of the variants predicted to be highly functional by a variety of different

algorithms at each window are included in the database, so a naive attacker who simply introduces a moderate

number of mutations at a constant rate is both highly likely to be detected and risks generating a nonfunctional

hazard due to the accumulated fitness cost. A sophisticated attacker may try to tune the number of mutations to the

likelihood of obtaining a functional sequence across regions, thereby maximizing the chance of evading screening

while preserving function. Their chances improve with the superiority of their variant prediction capabilities relative

to the defender, but they still must trade off the risk of generating a nonfunctional hazard against being randomly

detected upon picking a database variant at one of the five protected windows. b) If multiple attacks on a particular

hazard are detected, the system can adaptively add new windows and defend more variants at each window,

precluding informed attacks based on probing or database interrogation. Windows may also be rotated in and out.

11



Extended Data Figure 2 | Functional variant prediction and curation. The hazard database includes

predicted functional variants of quasi-randomly chosen windows comprising 20-amino-acid peptides from

hazardous proteins or 42-base pair DNA/RNA sequences from the noncoding regions of hazardous genomes. a)

Examples of variant peptide sequences. Variants matching unrelated sequences in GenBank are removed. b) The

random adversarial threshold increases as variants are added to the database. The exact method used to predict the

function of variants in order to generate the list will be randomized across several prediction methods to prevent

adversaries from predicting the contents of the hazard database.
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Extended Data Figure 3 | Fitness costs of loss-of-function mutations in M13 genes bearing windows.

The fitness of phagemids encoding filamentous phage genes I-IV (LacI-pLac-pI-pm, LacI-pLac-pII-pm,

LacI-pLac-pIII-pm, and LacI-pLac-pIV-pm, respectively) was quantified in cells carrying helper plasmids deleted for

the gene in question (M13cp-dg1, M13cp-dg2, M13cp-dg3, or M13cp-dg4). In all cases, cells extruded phagemid

particles when induced with 1 mM IPTG, as measured by infection of recipient cells with 3 independent biological

replicates. Data from helper cells transformed with phagemids lacking the wild-type phage genes are provided for

comparison. Phagemid titers below the limit of detection (100 cfu/mL) are plotted at the limit of detection. For all

genes, loss of function reduced fitness by over 100-fold, which is greater than the reduction to fitness 0.05 of

wild-type designated as too costly for the most contagious human virus to spread. The difference in maximum titers

suggests that the optimal level of each protein differs from the level produced upon induction, which may affect the

relative fitness of variants. Notably, phagemid overproduction may artificially increase the measured fitness of

variants with reduced activity when excess activity is costly, resulting in an apparent mutant fitness greater than

wild-type. Data plotted as mean ± standard deviation.
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Extended Data Figure 4 | fuNTRp window analyses for M13 bacteriophage proteins. a) Ternary plots

and color-bar snake plots show the probabilities that each residue of M13 phage proteins pI-pIV are neutral (N,

purple), toggle (T, yellow), or rheostat (R, cyan), N + T + R = 1 (color key at bottom). The nine defended windows are

highlighted (A-I, legend at bottom). Ternary plot and snake plot of protein pIII enlarged to show detail. On ternary

plots, scatter points show NTR scores for all residues in each protein, while 19-residue moving average (dotted trace)

from n-terminus (triangle) to c-terminus (square) shows local average NTRs. 19-residue windows were optimized on

the basis of average NTR scores, meaning that all possible window choices fall on the dotted trace. Windows chosen

for testing minimized neutral scores (N≈0, right diagonal edge), but varied in proportion of toggle vs. neutral. Colors

of dots for defended windows represent their average NTRs. b) 3D structure of pIII in context of assembled phage

virion tip (surfaces)
47,48

. Dots colored by NTR (left) indicate alpha carbon atoms. Ribbon representation (right)

shows the structure of pIII (purple), with defended windows in pIII (D-F) highlighted, colored by average NTR.

Flexible glycine-rich N1-N2 linker not shown in structure. Using a low neutral score as a proxy for functional

importance, minimum-neutral windows appear to correspond to regions with many contacts with nearby proteins,

pVI (gray) and pVIII (light gray) in this case (D, E), and binding sites (F).
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Impact of toggle positions given few neutral residues

Sequence (protein:amino acid start) Toggle Rheostat Neutral Fraction of attacks blocked

VEIKASPAKVLQGHNVFGT (pII:89) 14.4 3.48 1.12 0.852

MAVYFVTGKLGSGKTLVSV (pI:1) 10.43 7.11 1.46 0.492

FRGVFAFLLYVATFMYVFS (pIII: 395) 9.03 8.37 1.6 0.345

Comparison of toggle-dominant and rheostat-dominant windows given low neutrality

MAVYFVTGKLGSGKTLVSV (pI:1) 10.43 7.11 1.46 0.492

YSYLTPYLSHGRYFKPLNL (pI:219) 4.15 13.62 1.23 0.293

PQSVECRPFVFGAGKPYEF (pIII:367) 10.64 5.76 2.6 0.437

YANYEGCLWNATGVVVCTG (pIII:48) 3.8 12.17 3.03 0.297

Comparing toggle vs rheostat positions given more neutral residues

NFYPCVEIKASPAKVLQGH (pII:84) 11.14 4.39 3.47 0.477

YANYEGCLWNATGVVVCTG (pIII:48) 3.8 12.17 3.03 0.297

IATTVNLRDGQTLLLGGLT (pIV:360) 5.5 10.42 3.08 0.462

Assessing effect of spread of neutral residues for comparable mean neutral scores

NFYPCVEIKASPAKVLQGH (pII:84) 11.14 4.39 3.47 0.477

LLDVNATTISRIDAAFSAR (pII:131) 8.09 7.43 3.48 0.427

Extended Data Table 1 | Strategic selection of windows to assess impact of funNTRp attributes on

defensibility.Windows fromM13 phage proteins were chosen to compare how different fuNTRp scores affect the

fraction of combinatorial attacks blocked when screening 10
6
predicted variants at each window. Colors highlight

values of interest. The top section shows that with few neutral residues, more toggles (purple) increase defensibility

over more rheostats (cyan). The middle section compares toggle-dominant to rheostat-dominant windows. The

bottom section compares windows with comparable mean neutral scores that are either spread out or concentrated.

Some windows are included multiple times to enable comparisons. This strategic selection of windows provided

insights into optimizing the use of funNTRp outputs for identifying highly defensible sequences when generalizing

this approach to populate the hazard database used by the full SecureDNA system for screening DNA synthesis

orders. Note that two of the windows partly overlap.
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Extended Data Figure 5 | Effects of combinatorial fitness reductions. For its security claims, SecureDNA

assumes that fitness reductions due to individual mutations will tend to compound when such mutations are present

simultaneously. Fitness of combined mutations are estimated by various methods. a) Sequence “squares” are shown,

representing a variant, its orthogonal single mutants, and their combined double mutant. Top: A conceptual

instance. Bottom: A sequence square from the dataset with variants of the fragment MAVYFVTGKLGSGKTLVSV. b)

Fitness models for the fragment VEIKASPAKVLQGHNVFGT are assessed, comparing the average, minimum,

product, and disjunction (1-(1-f1)(1-f2)) of 1,000 single-mutant variants against their double-mutants’ fitnesses.

Dotted line denotes perfect correlation. Heuristically, product models statistically independent changes and

minimummodels breaking changes. c) Hex heat map of the fitness methods for 10
6
sequence squares from the

fragment VEIKASPAKVLQGHNVFGT shows highest concentration near the diagonal for the minimum and product

methods. Across all fragments, minimum and product consistently outperformed others by mean square error

(MSE). d) Fragments sorted by neutral score. For fragments with low neutral scores, expected to be regions where

breaking changes are likely, the minimummethod is superior by MSE. Conversely, the product method is superior

for fragments with high neutral scores, suggesting that small independent fitness impacts can be multiplicatively

combined to estimate the total fitness reduction.
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Extended Data Figure 6 | Fraction of undetected attacks against minimum fitness thresholds. The

adversary is assumed to possess perfect knowledge of variant fitness out to six amino acid mutations relative to the

19-amino acid wild-type subsequence. The horizontal axis depicts the tolerance level of the attacker to fitness hits:

more damaging hits are towards the left, while higher-performing but correspondingly restrictive fitness cutoffs are

on the right. Vertical axis is the fraction of escapee variants that had fitness higher than the cutoff that were not in

the 50,000-variant database. A decreasing trend indicates that an attacker attempting to synthesize an agent with

high fitness is more likely to match a functional variant in the hazard database: that is, the fuNTRp+BLOSUM62

classifier accurately predicts fitness at the window. Some sequence windows (VEIKA) offer robust protection even at

low fitness cutoffs, whereas others (YSYLT, FRGVF) protect a roughly fixed fraction of variants regardless of the

fitness threshold, indicating that our classifier has limited power to distinguish more fit variants at these windows.

Classifiers based on other variant effect predictors may differ in their predictive ability across distinct windows.

When all nine of these windows are combined multiplicatively (bold purple), simulating a defense based on all of

them, adversaries rarely predict functional variant genomes at any fitness threshold. The geometric mean (dark

brown, dotted) represents the average window such that the effect of combining more than 9 windows may be

extrapolated multiplicatively. Geometric mean excluding VEIKA, which may be an outlier, also shown (light brown,

dotted).
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Extended Data Figure 7 | Effect of excluding outlier window. Comparison of analyses including VEIKA

(top) and excluding VEIKA (bottom), which may be an outlier. Top, same data as Figure 5: original extrapolation of

levels of protection, or RAT (Random Adversarial Threshold), by powers of the geometric mean of all 9 escapee

curves (Extended Data Fig. 6, dark brown dotted line). The number of simulated windows, each protected with

50,000 variants, is plotted on the horizontal axis. The fitness at which the hazard is no longer functional is the

vertical axis. Contours show lines of constant RAT, or equal protection, as a trade-off between choices of minimum

fitness tolerated and number of windows protected. Bottom: identical plot where the effect of simulated windows is

extrapolated using the geometric mean of 8 escapee curves, excluding VEIKA (Extended Data Fig. 6, light brown

dotted line). Shaded region shows displacement of 99.9999% contour, which moved the most. Greatest displacement

was for measles. Excluding VEIKA from the estimate for the mean window, a virus as infectious as measles may

require up to 6 extra windows to achieve the same RAT. Even if VEIKA is an outlier, 100 or more windows should

suffice to block combinatorial attacks with high confidence.
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Extended Data Figure 8 | Predicted residue mutability correlates with defensibility. Points represent

19-codon windows from the M13 phage genome, plotted in 3D feature space by their average fuNTRp neutral, toggle,

and rheostat scores per residue. Lighter color indicates a higher fraction of 21,000 combinatorial attacks blocked by

screening 10
6
predicted functional variants of that window. The fraction of attacks blocked serves as an experimental

measurement of the window's robustness to mutations. Windows with higher toggle scores generally blocked a

higher fraction of attacks, as toggle residues are predicted to be less tolerant of mutations. funNTRp classifies

residues as neutral (tolerating most mutations), toggle (highly sensitive), or rheostat (intermediate mutability). The

summed scores per residue equal a constant, confining points to a plane. This analysis informed subsequent window

selection to maximize screening efficacy.
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Extended Data Figure 9 | Receiver-operating-characteristic curves. Left:

Receiver-operating-characteristic (ROC) curves for fuNTRp+BLOSUM62 prediction for nine 19-amino acid windows

across the genome of M13 bacteriophage. ROC assesses performance of computational prediction of variant

20



functionality for design of the hazard database. Curves show true positive rate vs false positive rate in the range 0 to

1 across a range of classification thresholds. ROC curves higher toward (0, 1) indicate better performance. Dotted

line from (0, 0) to (1, 1) corresponds to random guessing. Metric combines fuNTRp scores and BLOSUM62

substitution scores to predict fitness effect of amino acid substitutions. Functional variants defined as empirical

fitness >0.05 wild-type (purple). ROC for median empirical fitness shown in gray. Right: fuNTRp+BLOSUM62

prediction metric vs measured relative fitness. Bottom: similar curves and point clouds for all fragments.

Best-performing classifier VEIKASPAKVLQGHNVFGT demonstrates high discrimination ability, capturing >90% of

functional variants at <30% false positive rates, preventing database overfill while retaining impactful variants.

Poorer-performing MAVYFVTGKLGSGKTLVSV classifier still contributes protective value by correctly predicting

some functional variants, while trading off less favorably with database size. YANYEGCLWNATGVVVCTG produced

no meaningful ROC curve at 0.05 fitness threshold due to data sparsity; median curve indicates roughly average

metric performance where data exists.
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Supplementary Information

Supplementary Figure 1 | Analyses of red-team attacks against defended windows of M13 phage.

Predicted fitness using fuNTRp and BLOSUM62 to estimate fitness of sequence variants is shown on the horizontal

axis. Vertical axis shows variant fitness, in log fold enrichment after one round of phage replication and selection.

Headmap shows density of points in each of three categories: true positives and true true negatives, grouped as

“accurate calls;” false positives, which represent an instance when the predictor rated a variant’s fitness too highly

and incorrectly screened it, representing an inefficiency; and false negatives, which represent successful attacks that

were not thwarted at the window shown. YSYLT had negligible true positives but also no false negatives. VEIKA had

almost exclusively accurate calls and false positives, representing excellent performance. LLDVNA was the worst

performer by this metric in that it introduced the greatest density of false negatives; to restore security, other

windows with better performance must be included in combination with this window. As this cannot be known in

advance, this result highlights the importance of including many windows, which assist in driving RAT to 1.0.
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Appendix A: Theoretical specificity analysis

Curation ensures that RAT search will never flag known harmless sequences, but random matches to novel sequences

will occur at a frequency determined by the total amount of novel DNA synthesized and the number of sequences in the

database. The probability that any translation of a random 60-mer will match a specific 20 amino acid peptide is

8.0*10
-25
. If 10

15
unique 60-mers of oligonucleotides will be synthesized in 2035

50
, we expect approximately one

random false positive for the entire world’s DNA synthesis in that year. Similar numbers are obtained for DNA

screening. While biological sequences are far from isotropic
51
, almost all orders comprise or encode known sequences.

Therefore, random false alarms will overwhelmingly occur in oligonucleotide libraries for experiments such as deep

mutational scanning and directed evolution; removing a random oligo from a library of many thousands or millions is

not expected to impact the results of such an experiment. Empirical measurements of specificity on datasets of

real-world orders are detailed in the companion paper.

For DNA of length N and peptides of length N/3,

FADNA(N) = (novel N-mers/yr) * (N-mers in D) / (2 frames * 4
N
)

FAAA(N) = (novel DNA windows/yr) * (windows in D) / [2 frames * (20 amino acids * 61 / 64 codons)
(N/3)

]

Appendix B: Measures for Customer and Provider Data Privacy

This study utilizes unfiltered customer sequence data from specified time intervals provided by multiple DNA synthesis

companies. Acknowledging legitimate privacy concerns, this appendix aims to assure readers as well as the data

providers and their customers that stringent measures were taken to fully protect sensitive information in the analysis.

The identities of customers were anonymized and not known to the researchers, preventing any possibility of directly

revealing them accidentally or intentionally. Only the rates of detected hazards and approximate dataset sizes are

reported, with no other specific sequence information disclosed, such that the only sequence content revealed pertains

to hazards. We utilize data from three or more customers per provider and three or more providers total. If there were

only two customers per provider, one customer could attribute hazards exclusively to the other. However, with data

from at least three customers included, no single customer can definitively attribute a detected hazard to a specific

other customer. Similarly, if there were only two customers, one could roughly estimate the order volume of the other

by subtracting their own volume from the approximate total given. But with three or more customers aggregated, no

single customer can determine the exact order volumes of other specific customers, only an upper bound on their own

fraction of their provider's business, a quantity that could be derived from public sources like earnings reports.

Regarding the privacy of contributing providers, we can reasonably assume that each contributing provider knows the

contents of the dataset contributed to the analysis, allowing them to potentially deduce which data originated from

other providers. However, with data incorporated from at least three different providers, no single provider can

definitively attribute a particular dataset to another specific provider. To further obscure which hazards may be

attributable to which provider, and to confirm that screening is working as intended even in low-hazard-content sets,

we intentionally inject known hazard sequences into test data. Since only lower bounds on dataset sizes are provided,

reporting hazard detection rates with low precision ensures that any small rates are indistinguishable from zero. Thus,

a reported rate of <0.1% could reflect an arbitrary number of actual detections in the provider data, including zero,

preventing positive identification of which provider's data may have contained specific hazards. In summary, by

utilizing data from three or more customers per provider and at least three providers, along with intentionally limiting

the precision of the reported hazard rates and dataset quantifications, this methodology aims to effectively evaluate the

screening system while stringently protecting the privacy of all data providers and their customers.
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Appendix C: Screening for emerging hazards

RAT search is compatible with cryptographic approaches capable of obscuring the identities of entries in an emerging

hazard database. Such a system would enable a researcher concerned about an emerging potential biological weapon to

safely take action to restrict global access without creating information hazards
52,53

by securely conveying their concern

to one of the biologist curators responsible for emerging hazards. If a curator concurs that the threat is serious, they

could use their unique key to add sequences from the hazard to the encrypted emerging hazard database without

requiring further disclosure. Several times as many genes or genomes would be chosen as “decoys”: related genes or

agents that might seem to pose a threat, but are not actually of concern. The use of decoys can ensure that anyone who

finds a match to the database will learn only that it corresponds to a plausible-seeming threat, not that it is a credible

weapon. This would ensure that adversaries cannot learn whether a specific hazard can be used to build a weapon of

mass destruction by attempting to synthesize it. A detailed explanation of the cryptographic approaches required is

available elsewhere
23
. Emerging hazards would only be added to the database after multiple years of testing to verify

that the implementation is secure.
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